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ABSTRACT
The scale and dynamic nature of the Web makes real-time detec-
tion of misinformation an extremely difficult task. Prior research
mostly focused on offline (retrospective) detection of stories or
claims using linguistic features of the content, flagging by users, and
crowdsourced labels. Here, we develop a novel machine-learning
methodology for detecting fake news sources using active learning,
and examine the contribution of network, audience, and text fea-
tures to the model accuracy. Importantly, we evaluate performance
in both offline and online settings, mimicking the strategic choices
fact-checkers have to make in practice as news sources emerge over
time. We find that exposure networks provide information on con-
siderably more sources than sharing networks (+49.6%), and that
the inclusion of exposure features greatly improves classification
PR-AUC in both offline (+33%) and online (+69.2%) settings. Textual
features perform best in offline settings, but their performance de-
teriorates by 12.0-18.7% in online settings. Finally, the results show
that a few iterations of active learning are sufficient for our model
to attain predictive performance to comparable exhaustive label-
ing while incurring only 24.7% of the labeling costs. These results
stress the importance of exposure networks as a source of valuable
information for the investigation of information dissemination in
social networks and question the robustness of textual features.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
• Networks→ Network reliability.
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1 INTRODUCTION
Social media has been identified as a key avenue for the prolif-
eration and dissemination of fake news. Prior empirical findings
showed that much of the exposure to misinformation originates
from social media [1, 25, 50] and that misinformation travels farther,
faster, deeper, and more broadly than the truth on social media [56].
Detecting fake news has thus emerged as a crucial step towards
limiting its spread, with various approaches being employed in-
cluding manual labeling, crowd-sourcing, and machine learning
methods [48]. Section §2 summarizes the most relevant approaches.

We focus on the problem of identifying low-credibility sources,
referred to hereafter as fake news sources. Specifically, we focus
on identifying fake news sources using multiple types of signals
(network representations, audience features, and text), and evaluate
their robustness over time and dependence on the labeling budget.
Tackling the problem at the level of a news source, i.e., the level
of a web domain, is an imperfect first-order approximation for the
credibility of information with the key benefit of reducing the scale
of the problem. Labeling sources instead of individual news articles,
claims, or social media posts significantly reduces the number of
labels needed, which is critical for assessing credibility at Web scale.
Focusing on sources also has the theoretical merit of shifting the
focus from the veracity of individual pieces of information to the
editorial norms and journalistic standards of the processes that
generated them [28]. While prior research used manually-curated
lists of fake news sources extensively [2, 22, 24, 37, 43, 47], relatively
little research focused on developing computational methods for
detecting fake news sources.

The importance of computational methods for detecting fake
news sources lies in their potential to improve the coverage and ef-
ficiency of fact-checking efforts, which has important implications
for both research and practice. Fact-checking is the foundation for
much of the empirical research on fake news online [2, 22, 24, 37,
43, 47], and it is at the heart of the leading efforts by social media
and other information systems to limit the spread of falsehoods
online [13, 16, 34]. Comprehensive and up-to-date lists of fake news
sources are essential for getting an accurate read of the volume of
misinformation circulating online and informing the public about
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it. There are also benefits for displaying credibility ratings to users,
as it was shown to reduce consumption of heavy fake news con-
sumers, lowered people’s intention to distribute misinformation,
and spilled over to other sources without labels [4, 12]. Early detec-
tion methods are particularly important for making fact-checking
efforts as relevant and effective as possible before falsehoods have
circulated widely. Therefore, methods that enhance the coverage
and responsivity of fact-checkers can greatly contribute to limiting
the spread of misinformation.

Identifying fake news sources is difficult for several reasons. First,
sources of fake news are rapidly changing. An analysis by Poynter
found that nearly half of the sources considered as fake news in the
2016 U.S. presidential election were no longer active in 2018 [21].
Updating these lists is a costly and labor-intensive task that requires
careful attention to detail by expert fact-checkers, even with the aid
of crowdworkers. Wrong evaluations are costlier nowadays as fact-
checkers are increasingly exposed to litigation [7]. Second, it is not
clear how fact-checkers should allocate their resources or prioritize
their efforts. Checking the most popular sources may lead to a
low discovery rate since most people consume relatively little fake
news [22, 24]. It may also miss sources that circulate among smaller
communities with more avid consumers of fake news. Alternatively,
evaluating new narratives from known fake news sources may miss
falsehoods spread by other emerging sources. Finally, determining
the credibility of a source is a complicated task. It is not clear how
accurately machine learning models can perform this task and what
signals are most useful and robust over time.

In this work, we develop a novel methodology for identifying
fake news sources using multiple signals about a source. We for-
mulate the problem as a binary classification task of sources and
consider the relative contribution of different feature families. Core
to our approach is the idea that the credibility of a source is par-
tially determined by the credibility of other sources consumed by
its audience. This idea was alluded to by prior work [3, 22] but
was not empirically tested for detecting fake news sources. Relying
solely on users who actively share news online has a major flaw
since it overlooks a significant portion of the population, the “silent
majority” who rarely posts about news but still engages with it.
Potential exposure networks offer a solution by incorporating a
wider range of users and information sources. Thus, we consider
network features of a source derived from sharing and potential
exposure networks of users and sources (§3.2) as well as aggregate
characteristics of the audience engaging with a source. In addition,
as described in §3.3, we use linguistic features of a source as well as
measures of popularity and co-occurrence with other known fake
news sources. We evaluate our methodology using a pre-existing,
de-identified, and unique dataset collected by Grinberg et al. [22].
This dataset includes tweets that were shared by and were available
to a panel of over 16,000 registered U.S. voters on Twitter during
the 2016 U.S. presidential election (see §3.1 for details). Importantly,
this dataset enables evaluation when the complete set of labels is
known (offline settings), and when sources and labels emerge over
time (online settings; see §3.5 for precise definitions). Finally, we
test the ability of several Active Learning (AL) methods to pro-
duce accurate predictions with a limited labeling budget. AL is a
semi-supervised learning approach that uses a model trained on
available labels to select new data points for labeling (see §4.3 for

details). AL is particularly helpful in settings, like fake news source
detection, where unlabeled data is abundant and labeling is difficult,
time-consuming, or costly [46].

Therefore, our contributions are the following:
• A novel network-based methodology for identifying fake
news sources with active learning (§3.2-3.4).

• Empirical evidence of the predictive power of sharing- and
exposure-networks in offline and online settings (§4.1).

• An analysis of the distinctive characteristics of fake news
sources (§4.2).

• An evaluation of different active learning strategies for ef-
ficiently detecting fake news sources with a limited fact-
checking budget (§4.3).

2 RELATEDWORK
Quantitative work about fake news can largely be divided into two
groups: studies utilizing benchmark datasets with veracity labels
at the story level (news article or a social media post), and studies
that use pre-existing lists of fake news sources (see Shu et al. [49]
for a comprehensive review). Both approaches rely on fact-checked
information as ground truth. Typically, large benchmark datasets
consist of a few thousand stories and labels [58].

Crowdsourcing has been proposed as a way to increase the scale
of fact-checking efforts and prioritize stories for fact-checking. Pen-
nycook and Rand [37] showed that crowdworkers can produce
quality credibility labels that align well with the judgment of pro-
fessional fact-checkers. For example, in 2017, Facebook added a
feature that allowed users to flag content they deem as False News1.
User flags may, in turn, affect the ranking of content and guide
decisions on which stories to send to fact-checkers. Similarly, Twit-
ter’s Birdwatch allowed people to identify misleading content and
write notes that provide additional context [16]. Nevertheless, even
with crowdworkers operating as fact-checkers and professional
fact-checkers making only the final determinations, issues of scale
still persist due to the cost and labor-intensive work required to
fact-check the amount of flagged social media content [15, 19].

Machine learning methods offer a promising approach for scal-
ing up the detection of fake news content. Several benchmark
datasets have been developed to facilitate comparison across mod-
els [5, 53, 58]. Research in natural language processing (NLP) has
considered a variety of deep neural network architectures for the
task of using linguistic features of textual content for detecting fake
news [17, 26, 39, 54]. Others have considered different modalities in-
cluding fabricated and manipulated images [33, 45], videos [55, 59],
metadata such as time stamps, formatting information or the oc-
currence of certain HTML tags [11], and knowledge graphs [18].
Many works examined how rumors and misinformation propagate
through social networks [30, 31, 57], while others used network fea-
tures for detecting false content [14, 32, 38, 51]. Some studies have
even employed active learning to select the most informative posts
to label, reducing labeling costs and improving performance [6, 42].

An alternative approach that is prominent in social science lit-
erature relies on source-level definitions and existing lists of fake
news sources [2, 22, 24, 37]. Compared to story-level definitions,

1https://www.facebook.com/facebookmedia/blog/working-to-stop-
misinformation-and-false-news
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the use of source-level definitions offers a significant reduction in
the amount of labels needed at the cost of accuracy: All content
from a given source receives the same label, regardless of the ve-
racity of individual stories. Lazer et al. [28] justify this approach as
focusing on sources that “lack the news media’s editorial norms and
processes for ensuring the accuracy and credibility of information”.
Indeed, much of this line of work relies on some combination of
lists produced by trusted journalists [50], fact-checking organiza-
tions [20, 27], academics [60], and commercial organizations like
NewsGuard2 that evaluate the credibility of news sources. Yet, few
methods were proposed for augmenting these lists with additional
sources, which is the focus of the current investigation.

Perhaps closest in nature to the current work is the study by
Chen and Freire [14]. Their model constructs a co-sharing graph
of sources, where unweighted edges connect pairs of sources with
a minimum number of users who posted tweets linking to both
sources. Then, clustering is applied to the network, and sources in
the largest connected component of the graph are considered as
candidate fake news sources. The final classification of sources is
based on the average score obtained from applying a Linear SVM
over a sample of pages from the source. To avoid over-fitting, the
authors build their page classifier to be topic-agnostic (based on
HTML tags, readability scores, Part-of-Speech frequencies) since
“the news topic may change day by day, the layout and writing style
of a website do not change as frequent” [14].

This study extends Chen and Freire’s research by (1) incorporat-
ing potential exposure networks, (2) utilizing additional network
representations, (3) exploring audience characteristics, and (4) evalu-
ating themodel’s sensitivity to topic-aware textual features.We also
extend beyond prior art by experimenting with source-detection
methods in both offline and online settings.

3 METHODS
In this section, we present our methodology for identifying fake
news sources. We begin by describing the dataset used to construct
network and audience representations. Then, we detail the features
extracted for news sources in both offline and online settings. Fi-
nally, we describe the active learning strategies used to evaluate
the performance of our methodology over time and depending on
labeling budget.

3.1 Dataset
In this study, we conduct a secondary analysis of the de-identified
dataset made available by Grinberg et al. [22]. The primary dataset
we use consists of over 10 million tweets that linked to political
news during the 2016 U.S. presidential election (Aug-Nov, inclusive)
and were shared by or available to a panel of 16,442 registered U.S.
voters on Twitter. The panel also contains coarse sociodemographic
information about voters including age, gender, state, and regis-
tration with a political party. Grinberg et al. also showed that this
panel is reflective of the population of American voters on Twitter.
Importantly, the dataset includes not only tweets shared by U.S.
voters but also tweets posted by the accounts they follow on Twitter.
This enables the examination of potential exposure, content that is

2https://www.newsguardtech.com/

available to voters from their social network, referred to hereafter
as exposure for brevity.

In terms of credibility labels for news sources, we utilize the full
set of 1,505 labels produced by Grinberg et al. [22], which have been
used extensively in prior research. Grinberg et al. compiled this
list by drawing on existing lists from multiple trusted sources (fact-
checkers, other academics, etc.) and by labeling additional sources
using fact-checked information from snopes.com, a long-standing
and prominent fact-checking site. The set of labeled sources con-
sists of 1,212 green or yellow news sources that are non-fake, i.e.,
having no indication of repeatedly publishing false claims. In addi-
tion, there are 293 news sources with black, red, or orange labels
that have demonstrated repeated disregard for the truth, and are
regarded as fake news sources. For example, the nytimes.com is
considered non-fake (labeled as green), and infowars.com is con-
sidered fake (labeled as red). The panel shared links to a total of
1,006 labeled news sources (176 fake and 830 non-fake) and was
potentially exposed to a total of 1,505 labeled news sources (293
fake and 1212 non-fake). All 1,006 sources shared by the panel ap-
pear in the larger set of 1,505 sources shared by their peers. Our
primary results are based on the full set of 1,505 sources. Additional
robustness checks on the subset of 1,006 news sources shared by
the panel are reported in Appendix A. Appendix B demonstrates
the robustness of our results when exposure is approximated from
news cascade data.

3.2 Network Representations
Data about user interaction with news sources allows us to consider
the following two network representations:

(1) User-to-source interaction network: A bipartitemulti-graph
𝐺𝑏𝑖 = {𝑈 , 𝑆, 𝐸𝑏𝑖 }, where 𝑢 ∈ 𝑈 represents a user, 𝑠 ∈ 𝑆 rep-
resents a news source, and 𝑒𝑢,𝑠 ∈ 𝐸𝑏𝑖 is an edge iff user 𝑢
has interacted with the source 𝑠 .

(2) Source-to-source network 𝐺𝑐𝑜 = {𝑆, 𝐸𝑐𝑜 }: A unipartite
weighted projection graph of 𝐺𝐵𝑖 where 𝑠, 𝑠′ ∈ 𝑆 represent
news sources and 𝑒𝑠,𝑠′ ∈ 𝐸𝑐𝑜 iff there exists at least one user
who has interacted with both sources 𝑠 and 𝑠′.

For each representation, we consider two types of interactions:
sharing and exposure. User 𝑢 shared a source 𝑠 if 𝑢 posted a tweet
that contained a link to source 𝑠 . Similarly, user 𝑢 was potentially
exposed to source 𝑠 if user 𝑣 shared the source and 𝑢 follows 𝑣 .
We define the networks 𝐺𝑏𝑖−𝑠ℎ𝑎𝑟𝑖𝑛𝑔 and 𝐺𝑏𝑖−𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 based on
the respective definitions. From the 𝐺𝑏𝑖−𝑠ℎ𝑎𝑟𝑖𝑛𝑔 and 𝐺𝑏𝑖−𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

networks, we derive the 𝐺𝑐𝑜−𝑠ℎ𝑎𝑟𝑖𝑛𝑔 and 𝐺𝑐𝑜−𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 projection
networks, which capture the respective co-interaction relationships
between sources. Statistics about the number of news sources, users,
and interaction edges is in Table 1. Next, we describe the features
derived from these graphs.

3.3 Feature Extraction
We use four feature families to characterize a source: basic measures
of popularity and connectivity with fake news sources, network
features, audience composition, and textual features.

The basic (baseline) features include a measure of audience
overlap with known fake news sources and several measures of a
source’s popularity. Audience overlap is computed as the fraction

https://www.newsguardtech.com/
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Sources Users Nodes Edges

𝐺𝑏𝑖−𝑠ℎ𝑎𝑟𝑖𝑛𝑔 1,006 3,945 4,951 77,129
𝐺𝑏𝑖−𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 1,505 15,212 16,717 7,638,054
𝐺𝑐𝑜−𝑠ℎ𝑎𝑟𝑖𝑛𝑔 1,006 - 1,006 172,826
𝐺𝑐𝑜−𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 1,505 - 1,505 964,075

Table 1: Statistics about the sharing and exposure networks
detailing the number of sources, panel members (users),
nodes, and edges in each representation.

of fake news sources among neighbors of a source according to
Equation 1, where 𝐸𝑐𝑜𝑠 is the set of edges connected to 𝑠 from𝐺𝑐𝑜 , 𝑠′
is a neighboring source to 𝑠 , and 𝐹𝑎𝑘𝑒𝑆𝑜𝑢𝑟𝑐𝑒𝑠 is the set of sources
currently labeled as fake.

%𝐹𝑎𝑘𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑠,𝐺𝑐𝑜 ) =
��{𝑒𝑠,𝑠′ ∈ 𝐸𝑐𝑜𝑠 : 𝑠′ ∈ 𝐹𝑎𝑘𝑒𝑆𝑜𝑢𝑟𝑐𝑒𝑠

}����{𝑒𝑠,𝑠′ ∈ 𝐸𝑐𝑜𝑠
}�� (1)

This feature indicates the extent to which fake news sources are
co-shared or co-consumed by the same set of people.

Another set of baseline features pertains to the source’s popular-
ity. Fake news sources typically lack mainstream popularity, but it’s
unclear if they differ significantly from credible non-mainstream
sources. We assess source popularity through three metrics: the
number of unique users interacting with the source (|𝐸𝑠 |), the posts
linking to the source (|𝑃𝑠 |), and their ratio (|𝐸𝑠 |/|𝑃𝑠 |).

The second feature family consists of network features, which
aim to capture the structural characteristics of sources and indica-
tive relations in the user-to-source network. We use Node2Vec [23]
to obtain 20-dimensional embeddings for news sources based on
𝐺𝑏𝑖 . Node2Vec explores the network neighborhood of each node,
striking a balance between local and farther away ties, which pro-
vides a representation of the topology of the network. We also
derive a User-Frequency Inverse Source Frequency (UF-ISF) weight-
ing scheme inspired by TF-IDF, similar to the approach used in
prior work [35]. The rationale for this is that users who interact
with fake news sources may have a particular propensity to interact
with certain sources. To compute UF-ISF, we adapt the common
TF-IDF weighing as follows. First, we calculate the user frequency
(𝑈𝐹 ) for each 𝑠,𝑢 pair by dividing the number of posts that connect
user 𝑢 with source 𝑠 (𝑃𝑢,𝑠 ) by the total number of posts that linked
to the source (𝑃𝑠 ). Then, we calculate the inverse source frequency
(𝐼𝑆𝐹 ) for each user as the inverse proportion of unique sources that
a user 𝑢 engaged with on a logarithmic scale. Finally, we multiply
𝑈𝐹 and 𝐼𝑆𝐹 to obtain the final score as shown in Equation 2. The
UF-ISF final representation for a source is a vector. To reduce di-
mensionality, we used the F-test feature selection method to select
the 100 most informative users.

UF-ISF(𝑢, 𝑠,𝐺𝑏𝑖 ) =
|𝑃𝑠,𝑢 |
|𝑃𝑠 |

× log |𝑆 |
|{𝑠 ∈ 𝑆 : 𝑃𝑠,𝑢 ≠ ∅}| (2)

Another feature family includes audience features. Our goal
here is to capture the demographic and political characteristics
of users who engage with fake news sources. Prior work showed
that the age and the political affiliation of users who engage with

content from news sources are strong signals of news source relia-
bility [8, 22, 24, 25]. The unique panel created by Grinberg et al. [22]
enables us to use high-quality sociodemographic to characterize the
audience of a news source. In particular, we had access to users’ age,
gender, state of residence, and registration with a political party.
Categorical variables were encoded using a one-hot representation.
For each source, we calculate audience features as described in
Equation 3, where 𝐷 represents a function that returns the sociode-
mographic characteristics of user 𝑢, and 𝑓 represents one of the
following aggregation functions: mean, standard deviation, median,
and the 25th and 75th percentiles.

𝐴𝑢𝑑𝑖𝑒𝑛𝑐𝑒 (𝑠,𝐺𝑏𝑖 , 𝑓 , 𝐷) = 𝑓 (
{
𝑒𝑢,𝑠 ∈ 𝐸𝑠 : 𝐷 (𝑢)

}
) (3)

The final set of audience features for a source consists of all val-
ues calculated using all available combinations of sociodemographic
characteristics and aggregation functions (pairs of (𝐷, 𝑓 ))

Finally, our last feature family includes text features of posts
linking to a source. We used the standard TF-IDF weighting scheme
to represent posts and averaged them across posts linking to the
same source. We removed stopwords and used the 5,000 most com-
mon terms as our vocabulary. Again, we reduced the dimension-
ality by using the F-test feature selection method and selected the
100 most informative terms. In addition to TF-IDF, we calculated
text embedding for each post using the ’all-MiniLM-L6-v2’ model,
which is a more recent transformer-based architecture for text rep-
resentation [40, 41]. The final embedding vector for a source is a
384-dimensional vector that is the average across the embeddings of
posts linking to the source. Embedding-based methods may offer su-
perior results in fake news detection [17], but their interpretability
is more limited relative to TF-IDF.

The full list of features is in Table 2.

3.4 Active Learning Strategies
A prominent approach in machine learning in settings where la-
beled examples are scarce, unlabeled examples are abundant, and
labeling costs are high is to use Active Learning (AL). AL lets the
model choose the data points for labeling, i.e., the model trained
on labeled examples is used to select additional examples to obtain
labels for [46]. AL methods differ in the way they choose examples.
For an extensive survey of active learning methods see Tharwat and
Schenck [52]. We experimented with several prominent AL strate-
gies to identify the most accurate and effective method for selecting
news sources for labeling. We briefly describe these strategies next.

Uncertainty Sampling is a strategy that focuses on selecting
samples that the model is most uncertain about. In the binary case,
this involves choosing samples that are closest to a predicted prob-
ability of 0.5. With each iteration, the model reduces its uncertainty
and improves its performance.

Certainty Sampling is a strategy that focuses on selecting
samples that themodel is most certain about. This involves choosing
samples where the model exhibits high confidence or where the
predicted probability is closest to the value of 1.

Diversity Sampling is a strategy that aims to cover as much of
the input space as possible. It considers the dissimilarity or diversity
between samples when selecting new data points to label. It seeks
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Feature Explanation

% Fake Neighbors Percent of fake neighbors
in the source-to-source network.

Popularity
# users Number of unique users linking

to the source.
# posts The total number of source’s posts.

users/posts The ratio of unique users to
the number of posts.

Network Node2Vec

Node embedding of sources in 𝐺𝑏𝑖 ,
user-to-source network with
{dim=20, walk_length=5, p=2.0,
window=5, q=0.5, num_walks=50}

UF-ISF
Weighting scheme where each
source is a document and each
user engaging with it is a term.

Audience

Age Aggregate stat. of users’ age.
Gender Aggregate stat. of users’ gender.
State Aggregate stat. of users’ state.

Party Aggregate stat. of users’
registration party.

Text TF-IDF Averaged TF-IDF weighting of
posts linking to a source.

Embedding
Averaged sentence-transformer
embeddings over posts, computed
using all-MiniLM-L6-v2.

Table 2: Description of features used in predicting fake news
sources. The aggregations in the Audience features are mean,
standard deviation,median, and the 25th and 75th percentiles
over the source users.

to capture different aspects or clusters of the data, learn diverse
patterns, and improve its generalization capabilities.

We compared the above general-purpose active learning strate-
gies to the following three baselines. Random Sampling is our
most simple and unbiased sampling approach, where new sources
for labeling are selected at random.HighDegree Sampling chooses
the most popular sources for labeling. This strategy is likely to be
employed by fact-checkers who seek to cover the falsehoods that
reach the largest number of people. For example, NewsGuard claim
that their list of sources covers 95% of online engagement with news
across multiple major media markets [36]. Unlimited Budget is
a strategy where all new sources that emerge in a time period are
labeled. While this strategy is unlikely to be feasible in practice,
it serves as an upper bound for the theoretical performance when
labeling resources are unlimited.

By comparing the performance of our active learning strategies
against these baselines, we assess their effectiveness in terms of
labeling costs and classification accuracy.

3.5 Experimental Setup
Themain goal of our proposedmethodology is to assist fact-checking
efforts when labeling historical data as well as newly emerging
sources. To the end, we evaluate our methodology in both offline
and online settings, and when labeling budget is limited.

In offline settings, we gauge our method’s effectiveness when the
complete set of sources is known. We use five-fold cross-validation
to assess performance. In online settings, the assessment is per-
formed over time in increments of two weeks. In other words, the
model has access to labels from previous periods but is challenged
to predict the labels of sources that have surfaced in the most recent
time segment. The decision to divide the analysis into two-week
intervals over four months was motivated by a desire to balance
the emergence of new sources, approximately 40 in each period,
and the need for tight error bounds in the results.

In our experiments, we trained different classification models
including Logistic Regression, Neural Networks, XGBoost, and Ran-
dom Forests. When appropriate, we conducted a grid search over
parameters space to identify the best-performing model. Our binary
labels (fake or non-fake) were drawn from the dataset by Grinberg
et al. [22]. We used Precision-Recall Area Under the Curve (PR-
AUC) as our metric for evaluation, which is particularly suited
for circumstances of class imbalance [10]. In our case, class imbal-
ance is indeed an issue with non-fake sources dominating the label
distribution with a ratio of about 4:1 compared to fake sources.

To facilitate a more stringent comparison of sharing-based [14]
versus exposure-based models, we conducted additional experi-
ments that focused only on the subset of 1,006 sources shared by
the panel. While the additional signal about 499 (49.6%) sources in
the exposure network is likely to improve model performance, an
evaluation on the same subset of sources is important for disentan-
gling any performance gains from being solely the result of having
more labels in the exposure network.

4 RESULTS
In this section, we report the predictive performance of our models
in both offline and online settings, the important features associated
with fake news sources, and the results from our Active Learning
experiments.

4.1 Offline and online settings
Table 3 reports the predictive performance in PR-AUC of the best-
performing classification model (Random Forest with 100 trees and
a depth of four) using different feature families. The table includes
results for offline (columns 2-4) and online (columns 5-7) settings.
In both settings, we report separately the PR-AUC of using sharing
and exposure features for prediction, and the relative improvement
of the exposure-based model compared to the sharing-based model
(as percentages, in columns 4 and 7). The last column in the table
compares the performance of the best-performing model in online
settings against the best-performing model in offline settings while
using the same set of features.

Feature families across settings: The results in Table 3 show that
the performance of exposure-based models are superior to the
sharing-basedmodels across nearly all feature families 3. The exposure-
based model outperforms the sharing-based model by 7.6% to 59.7%
in offline settings and 33.8% to 96.4% in online settings, except for
the Fake Neighbors feature, which exhibits a 16.6% degradation in
performance. This degradation is attributed to noise introduced by

3Class-wise metrics of the best performing models are detailed in https://tinyurl.
com/class-wise-scores

https://tinyurl.com/class-wise-scores
https://tinyurl.com/class-wise-scores
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Offline settings Online settings Online vs. Offline

Features Sharing [14] Exposure % Sharing [14] Exposure % %

Baseline .529 .569 +7.6 .371 .497 +33.8 -12.7
% Fake Neighbors .467 .390 -16.6 .363 .509 +40.3 +8.9
Popularity .310 .495 +59.7 .237 .364 +53.9 -26.4

Network .567 .692 +21.9 .422 .726 +71.9 +5.0
UF-ISF .526 .670 +27.4 .369 .725 +96.4 +8.1
Node2vec .532 .628 +18.2 .421 .597 +41.7 -5.0

Audience .519 .642 +23.6 .409 .710 +73.6 +10.6
Text (TF-IDF) .509 .766 +50.4 .366 .623 +70.3 -18.7
Text (Embedding) .576 .778 +35.2 .391 .685 +75.1 -12.0
Baseline+Audience .542 .646 +19.3 .420 .714 +70.2 +10.5
Baseline+Network .575 .702 +22.2 .435 .726 +66.9 +3.4
Baseline+Audience+Network .567 .708 +24.9 .436 .736 +68.9 +4.0
Baseline+Text .513 .774 +51.0 .413 .628 +52.2 -18.9
All features .596 .792 +33.0 .438 .740 +69.2 -6.5

Table 3: The PR-AUC of the best-performing classification model using different feature families on the 1,505 labeled sources.
Offline settings results were evaluated using five-fold cross-validation over sources (columns 2-4). Online settings results were
evaluated on emerging sources in increments of two weeks with the model gradually having access to more labels (columns
5-7). In both settings, sharing- and exposure-networks are reported separately, with the percentage gain of exposure models
over sharing models. The last column shows the percentage improvement of the best online model over the best offline model.

the number of fake neighbors in many non-fake sources, possibly
due to co-consumption with a large number of non-fake sources.
When using all available features, the exposure-based model out-
performs the sharing-based model by 33.0% in offline settings and
69.2% in online settings.

Additionally, all individual feature families improve over the
baseline, and combining features with the baseline yields further
improvements. Notably, the performance of the baseline, text-based,
and the model based on all features is lower in online settings
compared to offline settings, while network and audience features
improve the performance. The degradation in performance of online
text-based models, both lexical (TF-IDF) and transformer-based,
stands out as these models have the highest PR-AUC among all
feature families in offline settings. These results suggest that text
features can distinguish fake news sources, but are significantly
less robust in predicting emerging sources. Network and audience
features, in contrast, show considerably more robust results across
offline and online settings. For example, the offline model based
on network features derived from the exposure network achieves
a PR-AUC of 0.692, which is comparable to the PR-AUC of 0.726
found in online settings (+5.0%).

Detecting fake news sources ahead of fact-checkers: To further
demonstrate that our methodology can identify fake news sources
ahead of fact-checkers, we manually identified nine fake and nine
non-fake news sources that did not appear in Snopes before the end
of the study period. Using this held-out set, our classifier achieved
a PR-AUC of 0.924. This suggests that our method can effectively
discover fake news sources before they are known to fact-checkers.

It should be noted that the high PR-AUC value is partially driven
by the fact that this small sample is balanced.

What is the value of exposure-network information? Repeating our
experiments using only the subset of 1,006 sources in the sharing
network results in a significant overestimation of performance. The
full details of these experiments are in Appendix A. We find that
using the subset of 1,006 sharing-network sources produces higher
PR-AUC values than using the full set of sources. For example, the
offline sharing-based model with all available features attains a
PR-AUC of 0.762 when evaluated on the 1,006 sources and a PR-
AUC of 0.596 on the full set, an overestimation of 27.8% of the true
performance. We find overestimation across feature families, in
both offline and online settings, and when using exposure-based
features (although of a smaller magnitude). These results suggest
analyzing only sharing-network information introduces a selection
bias. Aside from overestimation, Table 4 also replicates the finding
that exposure-based models outperform sharing-based ones in the
subset of 1,006 sources. This suggests that incorporating exposure-
based features not only improves predictive performance but also
extends the ability to detect a wider range of sources.

Other approximations of exposure information: The superior per-
formance of exposure-based models was further affirmed through
experiments on an additional dataset of fake news cascades. Despite
having only partial exposure information, exposure features signif-
icantly improved predictive accuracy. For detailed data description
and results, please refer to Appendix B.
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(a) Offline (b) Online

Figure 1: SHAP values of the best-performing exposure
model in the offline (left) and online (right) settings.

4.2 Characteristics of fake news sources
The relative importance of individual features is indicative of the
characteristics that distinguish fake news sources. To that end,
we compute SHAP values [29] for our best-performing models,
which show both the magnitude and direction of the contribution
of individual features to model accuracy.

Figure 1 presents the SHAP values of both offline (left) and
online (right) models computed over the exposure network with
all available features. Features on the y-axis are sorted according
to their importance from top to bottom. Each point represents a
source and its position on the x-axis corresponds to the SHAP
value of a particular feature. The color indicates the magnitude
of the raw feature value. For example, the average age of people
sharing a source (age_mean in panel a) shows that many fake news
sources have a high average age and that this is the most important
feature. Uninterpretable features such as Node2vec embeddings
were omitted from the figure and text features are reported on
separately below. A similar figure using the sharing network model
can be found in Appendix D.

Across both online and offline settings, key features help distin-
guish fake news sources. Age quantiles and mean values appear
prominently in Figure 1, indicating older audiences are more likely
to share or consume fake news. Party registration features are also
significant, showing fake news sources are less associated with
Democrats and more with Republicans. These findings align with
prior research indicating older, conservative individuals are more
likely to engage with fake news [22, 24]. Finally, fake news sources
have larger audiences in some U.S. states, but the small sample size
in some states should be noted.

Next, we examined the top five text terms having the highest
SHAP values. In offline settings, the top terms were hillary, soros,
WikiLeaks, bombshell, and corrupt. In online settings, the top terms
were gowdy, hillary, fbi, soros, and caught. The above terms rep-
resent public figures and topics that were involved and linked to
fake news stories during the 2016 election. Clearly, these textual
features are tied to the specific time span of the data.

4.3 Active learning experiments
Our active learning (AL) experiments followed the same setup as
the online settings, using all available features, with the additional
constraint of obtaining only a fixed number of labels at each time
interval. We experimented with different number of labels obtained
in each iteration, namely 10, 20, 40, 50, and 100. The results were
largely the same, and for brevity, we only report on the findings
with 40 new labels at each iteration. It is important to note that
all strategies started with the same set of 100 sources and were
evaluated on the same 30% of held-out sources.

The results of our AL experiments are shown in Figure 2. The
figure shows PR-AUC as a function of the number of labeled sources.
Each line represents the PR-AUC of a different active learning
strategy. The left panel shows the results obtained using the sharing
network and the right panel shows the results of the exposure
network.

The results in Figure 2 show that the Uncertainty Sampling
strategy outperforms all other strategies both when using sharing-
and exposure-network information (p<0.05). After a few iterations,
Uncertainty Sampling achieves comparable performance to the Un-
limited Budget strategy despite having fewer labels. For example,
Uncertainty Sampling using the exposure-based model reached
PR-AUC of 0.790 after only four iterations (a total of 260 labels),
which is a mere 24.7% of the labels used in the Unlimited Bud-
get benchmark with roughly the same PR-AUC (0.805). Similarly,
Uncertainty Sampling using the sharing-based model achieved a
PR-AUC of 0.569 with just 180 labels, equivalent to 25.5% of the
Unlimited Budget benchmark with PR-AUC of 0.572. As an addi-
tional robustness check, we tested the different strategies in offline
settings, and found similar results (see Appendix C for more details).
Taken together, these results demonstrate that our methodology can
achieve near-optimal performance with significantly fewer labels,
emphasizing its benefits for use in real-world applications.

In addition, Figure 2 shows that Random Sampling is a strong
baseline that is superior or comparable to three other sampling
strategies. When using the exposure network (right panel), the
PR-AUC of the High Degree, Certainty Sampling, and Diversity
Sampling strategies are significantly lower than Random Sampling.
When using the sharing network (left panel), only Certainty Sam-
pling is significantly lower, while the two other strategies are com-
parable to Random Sampling. This suggests that sampling strategies
that focus on just one “type” of sources – whether it is the most
popular, different from the labeled ones, or most likely to be fake –
are not optimal for identifying fake news sources, and a different
sampling strategy is needed to perform better than random.

5 DISCUSSION
In this study, we introduced a network-based methodology for iden-
tifying fake news sources. Our experiments included offline, online,
and active learning settings, which demonstrate the effectiveness
and robustness of our approach.

A key finding across all experimental settings is the persistent
improvement of exposure-based models over sharing-based mod-
els. We observed performance gains of 33.0% in offline settings,
69.2% in online settings, and substantial improvements when using
active learning. Moreover, our findings show that using sharing
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Figure 2: PR-AUC as a function of the number of labeled sources in online settings based on sharing (left) and exposure (right)
networks. Each line represents the PR-AUC of the different active learning strategies.

information alone leads to a significant overestimation of model
accuracy, and that exposure features produce better predictive re-
sults and more calibrated estimates when evaluated on the same
set of sources. These observations suggest that exposure-based
features not only enhance predictive performance but also enable
more accurate predictions on a broader range of sources, which is
critical for increasing the coverage of fact-checkers. Taken together,
the results provide compelling evidence in support of the use of
exposure information for detecting fake news sources.

The findings also highlight the risks of using text-based methods
for detecting fake news sources. While text-based models, both
lexical (TF-IDF) and transformer-based, produced some of the best
performance in offline settings, their PR-AUC dropped by 12.0-
18.7% in online settings. Examining the SHAP values of the text
features provided further insight into why these drops may have
occurred: the model identified relevant terms that are ephemeral.
In contrast, network and audience features produced results that
are robust over time. Another potential benefit of using network
and audience features is that they are more challenging to fabricate
compared to textual features.

Finally, our active learning experiments demonstrated the capac-
ity of Uncertainty Sampling to guide cost-efficient fact-checking.
Across different settings, we found that a few iterations of Uncer-
tainty Sampling were enough to achieve nearly optimal perfor-
mance while using only a small fraction of the labels. All other
sampling strategies produced results that were either no better
than random or worse. Particularly interesting is the result that
High Degree Sampling is no better than random because it suggests
that focusing on popular sources may hurt the discriminability of
other sources. In other words, labeling the most popular sources
may maximize reach among people, but it may be less informative
about the full distribution of fake news sources.

Our methodology has a few limitations. Twitter (now called X)
has increased the pricing for large-scale collection of a random sam-
ple of tweets, which enabled Grinberg et al. [22] to approximate
exposure. To continue investigating exposure networks researchers
will have to limit themselves to historical data, pay the increased
fees, or partner with social media platforms to use exposure signals.
Although not directly tested, we believe that there is a need to
effectively filter out bots, organizations, and other non-individual

accounts to extract high-quality signals about exposure. It is unclear
how well our methodology will perform in the presence of bots and
other malicious accounts or when audience features are based on
inferred characteristics rather than administrative records. Finally,
our findings may not generalize to all social media platforms or
other political systems. To partially mitigate generalizability limita-
tions the main claims were validated on another data set of fake
news cascades obtained from Reuben et al. [44] (see appendix B).

Several avenues for future research exist to extend this work.
The method’s resilience to adversarial attacks by bots, coordinated
manipulation, or flooding of content is a worthy topic for future
research, especially in a political climate of increasing affective po-
larization, which is particularly strong in the U.S. but also present in
other multi-party countries [9]. Future research could also explore
combining source-level and story-level methods, potentially refin-
ing credibility estimates and detecting changes in source credibility.
Moreover, once the list of labeled sources becomes large there is a
trade-off between labeling new sources and re-evaluating existing
ones. Future empirical work could also accurately quantify the cov-
erage of fact-checking efforts and determine the extent to which
their coverage is biased toward popular sources. This could better
inform fact-checkers about their coverage and their blind-spots.

In conclusion, this study introduced a network-based methodol-
ogy for detecting fake news sources that is both robust and effective.
The findings highlight the importance of exposure-based features
for model accuracy, the challenges of text-based features in online
settings, and the efficiency of Uncertainty Sampling in labeling
sources over time with a limited budget. These insights can inform
future research and practical applications in the ongoing battle
against misinformation.

6 ETHICAL CONSIDERATIONS
The study protocol was approved by the departmental ethics com-
mittee at Ben-Gurion University (protocol #SISE-2024-41). Several
broader implications of this research should be considered. First, the
methods developed in this research should only be used as part of a
decision-support system that involves human judgment, ideally by
trained journalists and qualified fact-checkers who follow clear and
transparent guidelines. We advise against usage without human-in-
the-loop as it raises important issues of accountability, liability, and
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potentially systematic bias. Second, fact-checkers should refrain
from overly relying on such algorithmic recommendations as this
may lead to algorithmic blind spots. We recommend combining the
approach laid out in this research with other approaches.
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A ROBUSTNESS CHECKS ON THE 1,006
SHARING-NETWORK SOURCES

This section presents additional results from offline and online ex-
periments, highlighting the performance of sharing- and exposure-
based models on the 1006 sources in the sharing network.

Table 4 shows the PR-AUC of the best-performing model (Ran-
dom Forest) using different feature sets on the 1006 sources. Results
for offline (columns 2-4) and online (columns 5-7) settings are in-
cluded. We report PR-AUC separately for sharing and exposure
features, and the relative improvement of exposure-based models

over sharing-based models (columns four and seven). The last col-
umn compares the best-performing models in online and offline
settings using the same features.

The results in Table 4 show superior performance of the exposure-
based models compared to the sharing-based models across feature
families except for baseline features. The PR-AUC of the exposure-
based model outperforms the sharing-based model by 2.5% to 38.9%
in offline settings and 19.6% to 22.6% in online settings. The only
exception is the model based on the baseline features, which ex-
hibits a 14.4% degradation in the offline settings and 0.1% in the
online settings. Further investigation suggests that in offline set-
tings the number of fake neighbors adds noise to many non-fake
sources, possibly due to fake sources being co-consumed with a
large number of non-fake sources. When using all available fea-
tures, the exposure-based model outperforms the sharing-based
model by 11.5% in offline settings and by 6.9% in online settings.
Similar to results on the full set of sources, all individual feature
families improve over the baseline features. Note that the inclusion
of multiple features on the subset of 1006 sources leads to marginal
overfitting compared to individual feature families.

B GENERALIZABILITY ON OTHER DATASETS:
FAKE NEWS CASCADES

To evaluate the generalizability of our methodology, we applied
it to Reuben et al.’s dataset [44], which includes social sharing
cascades of 3,355 news items (771 fake, 2,584 non-fake) posted by
1,621 Twitter users and potentially exposed to 188,459 others.

While this dataset only has a partial exposure network, it of-
fers an opportunity to test the portability of our methodology. In
particular, we aimed to check if exposure features still outperform
sharing features in this new dataset. If similar trends were found,
it would support the generalizability and robustness of our main
findings for related fake news detection tasks.

Table 5 shows the PR-AUC results of models trained with differ-
ent feature sets. Network representations significantly enhance per-
formance over the baseline for both sharing and exposure features.
Notably, the Exposure-Network model outperforms the Sharing-
Network model by 28.11%. Incorporating exposure information
with text features also yields similar positive gains.

Therefore, despite having only a highly incomplete view of the
exposure network, incorporating exposure signals still enhances
model performance. While the original dataset used in the paper
with its full exposure network and user demographic information
remains ideal for a comprehensive evaluation, these supplemen-
tal findings affirm the generalizability of exposure networks for
improving fake news source detection.

C ACTIVE LEARNING IN OFFLINE SETTINGS
In this section, we report the complementary results of the experi-
ments conducted in §4.3, focusing on offline settings.Wemaintained
a consistent setup with the offline settings, utilizing all available
features while imposing the constraint of acquiring a fixed number
of labels at a fixed number of labeling intervals. This approach
ensured that all active learning strategies commenced with the
same initial set of 100 sources. The test sources of each five-fold
cross-validation were used as a held-out set. We experimented with
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Offline settings Online settings Online vs. Offline

Features Sharing [14] Exposure % Sharing [14] Exposure % %

Baseline .694 .595 -14.4 .541 .540 -0.1 -22.1
% Fake Neighbors .667 .151 -77.4 .602 .455 -24.5 -9.7
Popularity .376 .595 +58.1 .250 .510 +104.0 -14.3

Network .706 .783 +10.9 .582 .696 +19.6 -11.2
UF-ISF .680 .717 +5.4 .546 .701 +28.4 -2.2
Node2vec .701 .705 +0.6 .680 .566 -16.7 -3.6

Audience .698 .716 +2.5 .654 .805 +23.2 +12.5
Text (TF-IDF) .629 .873 +38.9 .593 .728 +22.6 -16.7
Text (Embedding) .775 .846 +9.1 .668 .767 14.8 -9.3
Baseline+Audience .724 .721 -0.4 .670 .773 +15.3 +6.7
Baseline+Network .739 .739 +0.1 .650 .695 +6.9 -6.0
Baseline+Audience+Network .736 .737 +0.1 .679 .743 +9.4 +0.8
Baseline+Text .709 .866 +22.1 .668 .738 +10.4 -14.8
All features .762 .850 +11.5 .715 .765 +6.9 -10.1

Table 4: The PR-AUC of the best-performing classification model using different feature families on the 1006 source subset.
Offline settings results were evaluated using five-fold cross-validation over sources (columns 2-4). Online settings results were
evaluated on emerging sources in increments of two weeks with the model gradually having access to more labels (columns
5-7). In both settings, sharing- and exposure-networks are reported separately, with the percentage gain of exposure models
over sharing models. The last column shows the percentage improvement of the best online model over the best offline model.

Feature Sharing Exposure %
Baseline 0.363 0.368 +1.38
-%Fake Neighbors 0.323 0.321 -0.62
-Popularity 0.295 0.307 +4.07
Network 0.249 0.319 +28.11
-UF-ISF 0.250 0.260 +4.00
-Node2vec 0.299 0.378 +26.42
Text (TF-IDF) 0.362 0.396 +9.39
Baseline+Network 0.369 0.397 +7.59
Baseline+Text 0.435 0.450 +3.45
All Features 0.434 0.440 +1.38

Table 5: PR-AUC results of the best-performing classification
model using different feature families on the fake news cas-
cade dataset. Both the offline and online evaluation reports
the results for the sharing- and exposure-networks sepa-
rately with the improvement of the exposure-based model
relative to the sharing-based model in percentages

different labeling “budgets” in 10, 20, 40, 50, 100 and found similar
results. For brevity, we only report the findings with 40 new labels
in each epoch as representative of this range and conducted 10
labeling intervals. The full description of the strategies used for
selecting sources for labeling appears in §3.4.

The results of our active learning experiments are shown in
Figure 3. The figure shows PR-AUC as a function of the number of
labeled sources. Each line represents the PR-AUC of the different
active learning strategies based on the number of unknown sources

that were sent for labeling averaged over the five folds. The left
panel shows the results obtained using the sharing network and
the right panel shows the results of the exposure network.

The results in Figure 3 show that the Uncertainty Sampling
strategy outperforms all other strategies both when using sharing-
and exposure-network information (p<0.05). After a few iterations,
Uncertainty Sampling achieves comparable performance to the Un-
limited Budget strategy despite having fewer labels. For example,
Uncertainty Sampling using the exposure-based model reached a
PR-AUC of 0.803 after only five iterations (a total of 300 labels),
which is a mere 28.5% of the labels used in the Unlimited Budget
benchmark with a PR-AUC of 0.808. Similarly, Uncertainty Sam-
pling using the sharing-based model achieved a PR-AUC of 0.582
with just 220 labels, equivalent to 27.3% of the Unlimited Budget
benchmark with PR-AUC of 0.593. These results demonstrate that
our methodology can achieve near-optimal performance with sig-
nificantly fewer labels also for historical data labeling.

Similar to results in the active learning experiment on the online
settings, Figure 3 shows that Random Sampling is a strong baseline
that is superior or comparable to three other sampling strategies.
When using the exposure network (right panel), the PR-AUC of the
High Degree, Certainty Sampling, and Diversity Sampling strate-
gies are significantly lower than Random Sampling. When using
the sharing network (left panel), only Certainty Sampling is sig-
nificantly lower, while the two other strategies are comparable to
Random Sampling. This strengthens the indication that sampling
strategies that focus on just one “type” of sources are not optimal
for identifying fake news sources, and a different sampling strategy
is needed to perform better than random.
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Figure 3: PR-AUC as a function of the number of labeled sources in offline settings based on sharing (left) and exposure (right)
networks. Each line represents the PR-AUC of the different active learning strategies.

D FEATURE ANALYSIS ON SHARING-BASED
MODELS

In addition to the feature analysis conducted in §4.2, we report
the SHAP values of our best-performing models over the sharing
network.

Figure 4 presents the SHAP values of both offline (left) and
online (right) models computed over the sharing network with all
available features. Features on the y-axis are sorted according to
their importance from top to bottom. Each point represents a source
and its position on the x-axis corresponds to the SHAP value of
a particular feature. The color indicates the magnitude of the raw
feature value. For example, the average age of people sharing a
source (age_mean in panel a) shows that many fake news sources
have a high average age and that is the most important feature. It is
important to note that uninterpretable features were omitted from
the figure (e.g., Node2vec embeddings) and we reported separately
on text features below due to their plurality.

Similar to the feature analysis results on exposure-based models,
age quantiles and mean appear high in both panels of Figure 4, in-
dicating that older audiences were more likely to share or consume
content from fake news sources. Moreover, party registration fea-
tures were shown as important, strengthening the indication that
fake news sources were less associated with Democrat audiences
and more with Republicans. Finally, the U.S. state of Florida appears
to have larger audiences of fake news sources consumers, but again
it might be due to the small sample size in some states.

Next, we examined the top five text terms having the highest
SHAP values. In offline settings, the top terms were bombshell,
breaking, exposed, hillary, and WikiLeaks. In online settings, the
top terms were hillary, video, WikiLeaks, soros, and breaking. The
above terms represent public figures and topics that were involved
and linked to fake news stories during the 2016 election. Clearly,
these textual features are also tied to the specific time-span of the
data.

(a) Offline (b) Online

Figure 4: SHAP values of the best-performing sharing model
in the offline (left) and online (right) settings.
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