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Abstract

Human-to-human communication is no longer just mediated
by computers, it is increasingly generated by them, includ-
ing on popular communication platforms such as Gmail,
Facebook Messenger, Linkedin, and others. Yet, little is
known about the differences between human- and machine-
generated responses in complex social settings. Here, we
present EnronSR, a novel benchmark dataset that is based
on the Enron email corpus and contains both naturally oc-
curring human- and AI-generated email replies for the same
set of messages. This resource enables the benchmarking
of novel language-generation models in a public and re-
producible manner, and facilitates a comparison against the
strong, production-level baseline of Google Smart Reply
used by millions of people. Moreover, we show that when
language models produce responses they could align more
closely with human replies in terms of when responses should
be offered, their length, sentiment, and semantic meaning. We
further demonstrate the utility of this benchmark in a case
study of GPT-3, showing significantly better alignment with
human responses than Smart Reply, albeit providing no guar-
antees for quality or safety.

Introduction
The abundance of digital communications, often typed on
small mobile devices, creates a need for simpler input meth-
ods that can generate quick and complete textual responses
with a tap of a button. Even before ChatGPT captivated
the imagination of millions of people (Vogels 2023), AI-
generated responses were already prevalent. A prime ex-
ample is Google’s Smart Reply (Kannan et al. 2016; Chen
et al. 2019), which is available to the billions of Gmail
users (Marcelis and MacMillan 2018). Google’s Smart Re-
ply offers email recipients three reply suggestions that can
be used as-is without any typing or as a prompt for a longer
reply (see Figure 1 for example). Similar features are cur-
rently available in Facebook Messenger (Landowski and
El Moujahid 2017), Uber mobile app (Weng et al. 2019),
LinkedIn (Chakravarthi et al. 2017), and the Android op-
erating system (Cuthbertson 2019). Hancock et al. (2020)
refer to this type of communication systems as Artificial
Intelligence-Mediated Communication (AI-MC), where “an
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Figure 1: An example of an incoming congratulatory email
message and three reply suggestions generated by Gmail
Smart Reply: “Thank you!”, “Thank you for your support!”,
and “Thank you so much!”.

intelligent agent operates on behalf of a communicator by
modifying, augmenting, or generating messages to accom-
plish communication goals”.

As generative AI and AI-MC systems become more com-
mon, it is increasingly important to make their output as rel-
evant, appropriate, and usable as possible in different social
contexts, as well as to avoid unwanted responses. It is well
known that violating people’s expectations from their com-
munication partners can have negative implications for the
relationship between them and that those expectations de-
pend on the social context (Burgoon 1993; Burgoon, Stern,
and Dillman 1995). For instance, people have different ex-
pectations from colleagues at work, who typically commu-
nicate more formally, than the expectations for communi-
cation with friends whose messages are typically less for-
mal (Ishii, Kobayashi, and Grudin 1993). To be maximally
effective, AI-MC systems need to offer suggestions that are
appropriate and nuanced across several different dimensions
including the message style, sentiment, and emotional va-
lence expressed toward other conversation partners. For ex-
ample, a reply from a manager that uses formal language in
response to a personal request of an employee may be per-
ceived as cold and impact the working relationship.



Shared resources for evaluating and tracking the progress
of reply suggestion models are vital for making steady
progress in this increasingly-common task of AI-MC, and
for developing generation models that capture more of the
nuances of human-to-human communication in an open
and reproducible manner. Currently, much of the develop-
ment of AI-MC models is proprietary, and only in a few
cases, model-building steps were reported publicly (Kan-
nan et al. 2016; Chen et al. 2019). Moreover, the primary
metric for success was the number of suggestions used by
users (Robertson et al. 2021). While usability is certainly
an important metric for success, the nature of this language
generation task calls for considering additional dimensions.
This includes but is not limited to whether suggestions are
at all relevant, appropriate for the context, reflect a suitable
tone or emotion, and whether they introduce any systematic
bias (Robertson et al. 2021; Kannan et al. 2016). To obtain
this diversity of perspectives, benchmark datasets are criti-
cal.

There are two main challenges in evaluating AI-MC mod-
els. First, AI-MC systems often mediate private communica-
tions, which makes it difficult to obtain a large and heteroge-
neous sample of messages along with the full context of past
communications and the AI-generated response suggestions.
For example, accessing Gmail Smart Reply suggestions re-
quires either accessing individual email accounts or obtain-
ing private messages from participants. The private nature
of these communications presents a challenge for sharing
this data with the research community. Another challenge
is that there is no standard or agreed-upon set of measures
for evaluating the generated text by generative models in
this complex social context. Of course, there is a variety of
methods and measures for evaluation: from manual annota-
tion to assess the relevance of responses (Li et al. 2016b,
2017; Lison and Bibauw 2017; Liu et al. 2018) to examin-
ing word-overlap metrics such as BLEU and METEOR (Li
et al. 2016a; Sordoni et al. 2015) and training adversarial
learning models to reduce discriminability between model
and human responses (Li et al. 2017). However, the absence
of a public benchmark with agreed-upon metrics for eval-
uation hinders the ability to develop novel AI-MC models
in an open and reproducible manner and to systematically
compare them against strong, production-level baselines.

In this work, we present EnronSR1, the first public bench-
mark for evaluating AI-MC systems against organic human
responses to email messages, and for comparing against the
responses of a strong AI baseline on the same set of emails.
We built this resource by recreating email communications
from the public Enron corpus (Cohen 2015), and collecting
Google’s Smart Reply suggestions (SRs). We conducted ex-
tensive experimentation to ensure the validity and robust-
ness of our auditing results to different factors that can
impact the algorithmic suggestions such as time, different
senders, or recipient personalization. Based on the collected
SRs, we examine the differences between human- and AI-
generated responses in terms of when responses are offered,
their length, emotional valence, and semantic similarity. We

1Dataset available at https://doi.org/10.7910/DVN/RQBWAC.

further demonstrate the utility of EnronSR in benchmarking
newer AI-generation models using a case study of GPT-3.
Taken together, this work provides the first large-scale, val-
idated resource to facilitate the benchmarking of novel AI-
MC models in an open and reproducible manner.
Therefore, our contributions are as follows:
• A novel resource for benchmarking AI-MC models

against a strong production-level baseline of Google
Smart Reply.

• Empirical evidence of differences between AI- and
human-generated responses in terms of recall (i.e. when
responses exist), length, sentiment, and semantics in dif-
ferent social contexts which can guide future work.

• A case study that demonstrates how one can use EnronSR
to benchmark newer AI-generation models.

Related Work
The current literature on AI-MC can be organized into four
lines of work: (i) efforts to generate high-quality responses,
(ii) bias, (iii) user perception of AI-generated responses, and
(iv) implications of large language models (LLM) on trust,
safety and reliability of communication.

Generating High-Quality Responses
The seminal work in this body of literature is the paper by
Kannan et al. (2016) who detailed the inner workings of
the Google Smart Reply system in Gmail. Google’s Smart
Reply consists of a classifier that determines when to offer
suggestions, a language model for clustering common email
responses, a manual annotation that selects a safe and repre-
sentative response for each cluster, and a ranking algorithm
for top suggestions. Its language model was inspired by
the sequence-to-sequence (Seq2Seq) framework (Sutskever,
Vinyals, and Le 2014), which was originally applied for ma-
chine translation. One of the key issues with these models
is that they tend to generate generic and somewhat dull re-
sponses (e.g., “Thank you for the update!”), rather than more
meaningful and context-aware answers (Sordoni et al. 2015;
Kannan et al. 2016; Mou et al. 2016; Li et al. 2017; Liu et al.
2018).

Prior work explored ways to improve parts of the Seq2Seq
model to generate more meaningful responses. Several
works proposed variations of beam search that consider the
diversity of responses and therefore boost heterogeneity in
top-ranked suggestions (Li, Monroe, and Jurafsky 2016; Vi-
jayakumar et al. 2016). Lison and Bibauw (2017) introduced
a weighting model in their neural architecture to facilitate
learning of the quality of each query and response pair. The
weighting model, based on conversational data, associated
a numerical weight to each training sample to reflect its in-
trinsic quality for dialogue modeling. In addition, a more re-
cent study proposed a new re-weighting loss function to the
Seq2Seq model to weigh responses differently based on their
similarity to other responses and length (Liu et al. 2018).

EnronSR contributes to this line of work by providing a
meaningful set of organic interactions to evaluate novel AI-
MC models on and compare their performance to the widely
used production AI-MC system of Gmail Smart Reply.



Bias in AI-MC
The research community is increasingly aware of the risks of
biased training sets that are replicated or even amplified by
machine learning models (O’Neil 2016; Brock 2020; Craw-
ford, Miltner, and Gray 2014; Gillespie 2014; Noble 2018).
Research in the field of Natural Language Processing (NLP)
uncovered biases at various stages of model and represen-
tation learning as well as in applications of these models
for different tasks. These include bias in word representa-
tion and embedding (Bolukbasi et al. 2016; Brunet et al.
2019; Zhao et al. 2019; Basta, Costa-jussà, and Casas 2019;
Kaneko and Bollegala 2019), hate speech and abusive lan-
guage detection (Park, Shin, and Fung 2018; Sap et al. 2019;
Mozafari, Farahbakhsh, and Crespi 2020), and coreference
resolution (Zhao et al. 2018).

A growing body of research examines both the origins and
implications of bias in natural language generation (Sheng
et al. 2020; Shwartz, Rudinger, and Tafjord 2020; Liu et al.
2020; Henderson et al. 2018; Dinan et al. 2020). It has been
shown that language models generate stereotypical occupa-
tions and varying levels of respect for different genders and
races (Sheng et al. 2019; Kirk et al. 2021; Lucy and Bam-
man 2021). A noteworthy example is GPT-3’s association of
Muslims and violence (Abid, Farooqi, and Zou 2021).

Bias in AI-MC systems can similarly perpetuate or in-
crease disparities. Those who receive messages from people
who use AI-generated text have no easy way of knowing if
it was written by the human sender or generated by AI, and
the suspicion of automation use is linked with negative eval-
uations (Hohenstein et al. 2023). Automated replies may or
may not match the sender’s style or the receiver’s expecta-
tions of the communication given its particular context (Bur-
goon 1993). Therefore, biased AI-generated responses bear
the risk of reinforcing existing stereotypes and even harming
relationship-building between people.

While research on bias in NLP, in general, is expand-
ing, AI-MC systems received relatively less attention from
the research community. A few works identified bias in
the sentiment of AI-generated responses. Hohenstein and
Jung (2018) reported positivity bias in suggestions gener-
ated by Google’s Allo messaging app. Arnold et al. (2018)
showed that exposure to positive AI suggestions subse-
quently led to more positive human writing. More recently,
experimental work showed how the presence of Smart Re-
ply recommendations changes the speed and positivity of the
replies people send and some perceptions of the communi-
cation partners and user agency (Mieczkowski et al. 2021;
Hohenstein et al. 2023; Wenker 2023). However, bias in AI-
MC has not yet been examined in large-scale and naturalistic
settings that include both human and machine-generated re-
sponses. EnronSR enables future work to identify additional
linguistic dimensions where AI-MC systems are systemati-
cally biased, and paves the way for developing more inclu-
sive and representative models and communication systems.

User Perceptions of AI-Generated Replies
Prior work has shown that users want and would bene-
fit from various degrees of automation when responding to

emails (Park et al. 2019; Yang et al. 2018). Yet, the social
implications of these technologies are not fully understood.

Previous research has conducted algorithmic audits of ex-
isting systems and asked participants to reflect on the AI
suggestions. Participants felt that the emotional expression
generated by AI was sometimes inappropriate (Brandtzaeg
and Følstad 2017), and that AI-generated profile informa-
tion was perceived as less trustworthy (Jakesch et al. 2019).
Robertson et al. (2021) conducted qualitative interviews ask-
ing participants to reflect on Google Smart Reply sugges-
tions, and identified several problematic aspects, including
lack of salutations, inauthentic personal style, and responses
that do not match the social context. In experimental set-
tings, Hohenstein et al. (2023) showed that when Smart Re-
ply is available, people perceive their communication part-
ners as closer and more cooperative, but evaluate them more
negatively when they suspect partners are using automated
replies.

The EnronSR dataset offers a systematic way to compare
AI-generated suggestions against naturally occurring human
replies on a large set of emails, and can contribute to grad-
ually mitigating those differences in an open and replicable
manner.

Safety and Reliability in Language Generation
Large language models like GPT-3 or ChatGPT offer high-
quality general-purpose responses that can potentially be
fine-tuned to fulfill AI-MC applications. Yet, there are con-
cerns about the tendency of these models to produce offen-
sive, biased, or abusive outputs (Bender et al. 2021). It is
unclear how these models will respond to harmful narratives
and whether they will serve to amplify them. Furthermore,
there are concerns about the tendency of GPT models to hal-
lucinate, appearing knowledgeable and credible even when
generating inaccurate or misleading content (Bender et al.
2021; Kumar 2023; Lim and Schmälzle 2023), which adds
to the risks of deploying such models in production. In con-
trast, Google Smart Reply generates common and safe re-
sponses by design, drawing on a set of responses that are
sufficiently popular and going through several steps of man-
ual assurance of response appropriateness. Therefore, En-
ronSR can be used as a baseline for benchmarking not only
the quality of the responses but also their safety.

The Enron Dataset
The foundation of this work is the public Enron email
corpus, which consists of more than 500,000 emails from
150 Enron employees sent over 3.5 years, from 1998 to
2002 (Cohen 2015). The emails were made public at the
conclusion of the legal case brought forward and won by
the US government against Enron. To the best of our knowl-
edge, Enron is the largest publicly available corpus of email
messages to date and no prior work has used it to evaluate
AI-MC systems. For ease of processing, we use a version of
Enron corpus released by the CALO Project2.

2https://www.cs.cmu.edu/∼./enron/



Methods
A key element in the creation of EnronSR is the collection
of AI-generated reply suggestions from Google Smart Reply
for emails in the Enron corpus, which then enables a com-
parison of human- and AI-generated responses. Before col-
lecting Smart Reply suggestions, we preprocessed the origi-
nal Enron corpus and made several robustness checks to en-
sure the validity of our collection processes, as detailed next.

Data Preprocessing
The Enron dataset contains email messages in raw format as
they were sent using the email clients and servers used circa
2002. This meant we had to resolve email aliases, remove
duplicate messages, and organize messages into threads. For
deduplication, we considered four message fields as iden-
tifying a message: sender (“To”), recipient list (“From”),
email subject, and contents, which resulted in the removal of
266,286 duplicate messages. To construct threads, we used a
simple heuristic to extract the parent of each message since
the “In-Reply-To” header did not exist at the time. We iden-
tified the message parent as a message with an earlier times-
tamp, a recipient that matches the sender of the child mes-
sage, and a matching subject line, allowing common modifi-
cations such as “Re:” or “Fw:”. We manually validated this
heuristic to ensure that it yields consistent threads that match
the logical order of the communication.

Overall, the preprocessing resulted in a dataset with
234,485 messages in total, sent by 19,122 distinct email ad-
dresses.

Sampling and Robustness Checks
In order to recreate the full communication in our prepro-
cessed Enron dataset with maximum fidelity, one would
have to operate nearly 20,000 accounts, over the course of
3.5 years, sending over 230,000 messages, and collecting the
SRs through the Gmail interface. While this approach may
generate high fidelity, it is time-consuming, costly, prone to
failures due to changes in Gmail’s interface and the underly-
ing Smart Reply model during this extended period of time.

Instead, we focused on a stratified sample of emails and
accounts, preserving the order of messages but not their full
chronological timeline, and validating that the SRs gener-
ated are not impacted by these choices. We conducted an
extensive series of robustness checks that assessed the sen-
sitivity of Google’s Smart Reply to different aspects of time,
senders, personalization, and dependence on previous com-
munications. While this approach cannot rule out every pos-
sible factor that may impact the SRs being generated, it rep-
resents our best attempt to control for possible confounding
factors while keeping the collection process feasible.

Time dependence: We ran three full parallel executions
that sent emails one after the other with different time gaps
of two seconds, 60 seconds, and random sleep time uni-
formed sample in the range of 2-60 seconds. The same
SRs were generated in all of these cases. We further tested
whether Smart Reply generates different SRs depending on
times of the day (e.g day or night) or days of the week (e.g

weekdays or weekends) of sent messages. In all of our exper-
iments, the same SRs were generated in all conditions. We
also made sure that the same SRs were present when collect-
ing the SRs using the Gmail interface at different times and
at different time lags after the message was received.

Sensitivity to different senders: Due to budgetary con-
straints, we could only create a limited number of Google
Workspace accounts. This implied that certain messages that
were sent by different senders in the original dataset were
“packed” into a single account in our data collection pro-
cess. To test the sensitivity of the SRs to such packing, we
collected SRs for different senders as well as varied the num-
ber of accounts being packed into a single account. In all
of these experiments, identical SRs were generated for the
same message.

Recipient personalization: SRs may be personalized for
the recipient account as indicated by the original paper (Kan-
nan et al. 2016). We tested this in two different ways. First,
we sent the same message from the same sender to mul-
tiple recipients and record the SRs the recipients received.
Second, we tested different history lengths – full history, 12
preceding months, and 3 preceding weeks – before collect-
ing the SRs for the last month of data. We found that SRs
were generally identical between different recipients for the
same message and sender, but there were a few rare cases
where SRs differed. When examining the SRs for different
history lengths we found differences both in the amount of
SRs being offered and their content. The more history we
preserved, the more similar the SRs were across recipients.
These findings indicate that Gmail SRs are personalized in
non-trivial ways. To mitigate the impact of personalization
on our results, we chose to focus our data collection efforts
on the 150 focal Enron users that have full message histories
in the original dataset.

Experimental Procedure
As described in the previous section, we collected SRs for a
stratified sample of accounts and messages that prioritized
emails with human replies. Out of the 234,485 emails in
the preprocessed dataset, 74,382 were addressed to the 150
users from Enron users and 8,085 of them had a reply. Our
data collection included all of these 8,085 messages with a
reply, and additional 944 messages that our focal users sent
as part of these conversations, for a total of 9,029 messages.
In addition, we created a similarly-sized random sample of
9,029 messages that were addressed to the focal 150 users
and had no reply. Finally, to emulate suggestions to mes-
sages originating from outside the organization, we sent a
random sample of 2,000 messages that were addressed to
our 150 employees by external accounts.

We created 150 Gmail users, one for each Enron user in
the original dataset, as part of a Google Workspace Busi-
ness Starter account. These accounts were used to send and
receive emails as well as to collect the SRs as described be-
low. All data collection procedures took place in May, 2022,
and all accounts were permanently deleted upon completion.

There are 12,971 external email addresses and 6,151
Enron-internal addresses that appear in the pre-processed
dataset for our 150 focal Enron employees. In order to re-



main within the allotted budget and within Google’s limits
on email automation, we created a single Gmail account that
sent out all external messages to Enron users, 16 accounts
that represent Enron non-focal users, and 150 accounts for
the focal Enron users.

Overall, we sent a total of 20,058 messages, many of them
having multiple recipients in the dataset. Therefore, our final
dataset consists of 34,626 messages. All messages were sent
in the original chronological order.

Collecting SRs: We developed a custom client-side code
that emulated user interaction with the Gmail interface. The
script “clicked” on individual messages and collected both
the incoming message and SRs. We manually validated the
accuracy for script in retrieving the actual SRs available
to Gmail users. All SRs were linked to the messages that
prompted them as well as to the human reply to the same
message, if such reply exists.

Results
In this section, we describe the EnronSR dataset, and re-
port statistics about differences between AI- and human-
generated responses along a number of linguistic dimen-
sions. The section closes with a case study of GPT-3, demon-
strating the utility and usability of EnronSR for benchmark-
ing language generation models.

Summary Statistics About EnronSR
Table 1 provides summary statistics about the EnronSR
dataset. The dataset contains all 34,626 emails received by
the 150 Enron employee accounts that we recreated. Since
Google Smart Reply does not produce reply suggestions
for every email, not all emails have SRs. Similarly, not all
emails have a human reply associated with them. As a classi-
fier for detecting when human replies will be present, Smart
Reply has an accuracy of 68.0%, which is mostly driven by
correctly identified cases without a human reply (N=20,166,
58.2%) and a little by cases with human replies (N=3,406,
9.8%). However, the overlap between messages with hu-
man replies and messages with AI suggestions is quite low.
Google SR did not offer suggestions for 5,972 emails that
people responded to, missing 63.6% of human replies, and
“over-triggering”, offering suggestions to emails that people
would not reply to, in 5,082 cases (60% of its suggestions).

Differences Between Human- and AI-Generated
Responses
Next, we examined the differences between human- and AI-
generated responses in the set of 3,406 emails where both
existed. We found that the average length of the SRs is 3.17
(3.12, 3.22)3 words, while the average length of the first sen-
tence of the human responses is 10.12 (9.81, 10.43) words.
These differences suggest that SRs offer a much more con-
cise response, and potentially more generic, than what hu-
mans normally write. Although the SRs are based on fre-
quent full-sentence responses by people, the system offers
much shorter responses on average.

3All error estimates represent 95% confidence interval

Has Smart Reply?
No Yes

H
um

an
re

pl
y? No 20, 166 5, 082

72.9%
(58.2%) (14.7%)

Yes 5, 972 3, 406
27.1%

(17.2%) (9.8%)

75.5% 24.5% N=34, 626

Table 1: Summary statistics about the 34, 626 incoming mes-
sages in EnronSR dataset. The table shows the number of
incoming messages with and without Smart Reply sugges-
tions (columns) and with and without human replies (rows).
In parenthesis are percentages of the total number of incom-
ing messages, and row/column totals are shown along the
table margins.

Figure 2: Differences in the emotional valence between hu-
man and SR generated responses.

We also examined the emotional valence of human- and
AI-generated responses. To evaluate emotional valence ro-
bustly, we used three different measures: Flair NLP (Akbik
et al. 2019), Textblob (Loria et al. 2018), and Vader (Hutto
and Gilbert 2014). Flair yields positive or negative valence
labels while taking into account contextual information
around words. TextBlob and Vader extract valence scores
between 1 and −1 using a lexical approach with a dictio-
nary of positive and negative words.

Figure 2 shows the proportion of negative and positive
emotional valence of human- and AI-generated responses on
the same set of emails as measured by Flair. Similar results,
obtained by TextBlob and Vader, are shown in the appendix.
We observe that human replies fall in the negative bucket at
twice the rate of the SRs. Moreover, they are more evenly
distributed across the buckets, as opposed to the SRs, where
the vast majority (81.2%) are positive. An example of such
a mismatched sentiment between a human reply and smart
replies is having a negative human reply saying “I do not
want my name in the article” and 3 positive smart replies:
“Will do.”, “Thanks, I’ll take a look.”, “Looks good to me.”
This positivity bias is consistent with the findings of prior
work (Hohenstein and Jung 2018; Hohenstein et al. 2023;
Mieczkowski et al. 2021), but is still notable given its magni-
tude and Google’s deliberate attempt to address the issue by
adding negative-sentiment responses (Kannan et al. 2016).

Next, we examine the semantic characteristics of the SRs



Figure 3: The distribution of the highest cosine similar-
ity scores between the three Smart Replies and the human
replies to each email.

Figure 4: A visualization of the embeddings using t-SNE.
Orange points represent human responses and blue points
represent the SRs.

and human replies. To do that, we used BERT sentence em-
beddings (Reimers and Gurevych 2019) and measure cosine
similarity between human and AI-generated responses. For
brevity, we only report similarity results using the most sim-
ilar SR of the three to the human response, providing an
upper bound for similarity, although we experimented with
additional configurations (averaging the embeddings of the
three SRs, taking only the first SR suggestion, using only
the first sentence of the human reply) and the results were
not meaningfully different.

Figure 3 shows the full distribution of cosine similar-
ity scores between the human reply and its closest SR sug-
gestion. We find that the average cosine similarity of the
most similar SR to the human response is 0.252 (0.247,
0.257). The appendix provides a few illustrative examples
that demonstrate the meaning of relatively low and high co-
sine similarity of SRs. We also found that the average cosine
similarity of the third suggestions by Smart Reply is sig-
nificantly lower than the average similarity of the first and
second replies (p < 0.001), and no significant difference
between the first and second suggestions. Figure 4 further

Speak Direction Semantic Similarity
Intercept 0.291 (0.013)***
Down-speak −0.050 (0.018)**
Same −0.063 (0.016)***
Out-speak −0.037 (0.014)

Note: N=2,408, significance levels are denoted as *** p<0.005, **
p<0.05, * p<0.1.

Table 2: Coefficients and their standard errors of a linear re-
gression modeling cosine similarity as a function of speaker
direction.

shows, using the t-SNE dimensionality reduction of human
and SR embeddings, that human replies cluster together in a
dense core, while the SRs are mostly scattered around them,
a visual indication of the dissimilarity.

Finally, we use a simple regression model to examine
whether semantic similarity is associated with the direc-
tion of speaking: up the chain (up-speak), down the chain
(down-speak), to a peer of the same level (same), or out-
side the company (out-speak). Speaker direction was deter-
mined using the information about the employee roles in
the company4 for messages where both roles were known
(N=2,408). Table 2 shows the results of this regression.
The intercept represents the base level of up-speak, where
the average response to someone with higher social status
(up-speak) has cosine similarity of 0.29 (0.25, 0.32). SRs
that down-speak have slightly lower, but statistically signif-
icant, cosine similarity as indicated by the negative coef-
ficient (−0.05). Even more dissimilar, are suggestions be-
tween peers of the same social status with a negative coeffi-
cient of −0.06 and an average similarity of 0.22 (0.21, 0.24).
Although SRs are generally quite far semantically from hu-
man replies as demonstrated in Figures 3 and 4, these re-
sults suggest that using AI-generated responses may portray
a sender who is using SRs as slightly less authoritative and
of lower social status.

Case Study of GPT-3
To demonstrate the utility of EnronSR for benchmarking
language models, we conduct a case study of GPT-3. The
goal of this case study is not to engage in extensive and ex-
haustive benchmarking of various language generation mod-
els, nor is meant to identify the optimal prompt for produc-
ing the best-performing responses. The case study is strictly
focused on demonstrating how one can relatively easily use
EnronSR to examine an AI-MC model. To that end, we col-
lected 3,683 responses generated by GPT-3 for each of the
Enron emails with human response and compared them to
both the human responses and the SRs. We used the text-
davinci-003 model from OpenAI with the prompt: “write a
response for this email message: {email message}”.

We found that the average length of the first sentence gen-
erated by GPT-3 is 9.54 (95% CI: 9.35, 9.74) words on aver-
age, which is a lot closer to the average of human replies

4Obtained from http://www.ahschulz.de/enron-email-data/



(9.79 words) than the average of the SRs (3.18 words).
We also compared GPT-3 responses to SRs and human re-
sponses in terms of emotional valence, replicating Figure 2
with the addition of GPT-3. Figure 6 in the appendix shows
the proportion of negative and positive responses as mea-
sured by Flair for humans, SR, and GPT-3. The figure shows
that GPT-3 generates significantly fewer positive-biased re-
sponses (p < 0.05), and that it is better aligned with the
polarity of human responses. Along the same line, we found
that the average cosine similarity between GPT-3 and human
responses is 0.309 (0.300, 0.318) is statistically higher than
the similarity of SR and human responses of 0.252 (0.247,
0.257), although both suggestion models are still quite far
semantically from the human replies.

Discussion & Conclusion
As AI-generated text becomes more widely adopted, it is
important to understand how to make these technologies as
relevant and as efficient as possible. In this paper, we intro-
duced EnronSR, a novel dataset that provides human- and
AI-generated responses to the same set of emails. EnronSR
enables the benchmarking of new reply suggestion mod-
els and language generation architectures against the strong
production-level model of Google Smart Reply and a ground
truth of human replies. We demonstrated how one can utilize
this corpus to benchmark reply suggestion models in a case
study of GPT-3.

Our findings suggest that current, widely available AI-
MC implementations are still quite far from perfectly cap-
turing the nuances of human-to-human communication. We
observe significant differences between human replies and
SRs both in form and function: SRs are considerably shorter,
more positive, and semantically distant from human replies.
The results of our case study on GPT-3 indicate that more
recent language generation models are capable of closing
these gaps to some extent. Nevertheless, it is important to
note that “pure” language generation models do not have the
same safety and quality standards that production Learning
to Rank models like Google Smart Reply adhere to. Namely,
SRs are generated from a finite set of high-quality and safe-
to-use clusters (Kannan et al. 2016), while GPT-3 provides
no bounds for the generated text. Mechanisms for assuring
the safety and quality of generated language are an active
area of research, which could significantly contribute to the
success of AI-MC systems.

The results also raise a series of normative questions
about the role that AI-MC systems should fill in support-
ing human-to-human communication. The shortness of SRs
may provide a fast and easy way to “close” a conversation.
Surely, that is a desired outcome in some circumstances, but
capturing when and where this is desired is a complex task
that current models are not yet mastering as evident in the
mismatch between human and SR responses. Similarly, the
positivity bias we observed — reaffirming prior findings ob-
tained using different methodology (Hohenstein and Jung
2018; Hohenstein et al. 2023; Mieczkowski et al. 2021) and
persisting despite direct inclusion of negative responses in
the SR model (Kannan et al. 2016) – may be a bias that peo-
ple, in fact, want to exist. It is plausible that people prefer

biased AI assistants that constantly skew towards more pos-
itive responses, but it is difficult to calibrate when, where,
and to what degree this is desired. Future work could try
to disentangle these complexities and find ways to promote
user agency over these decisions.

Future work may also use EnronSR to track the progress
of AI-MC systems in terms of the above-mentioned dimen-
sions and explore additional dimensions of the text in which
AI-MC are systematically biased. These may include as-
pects such as formality or politeness. The corpus may also
be used as a resource for training new models that aim to
reduce bias and as a resource for identifying additional ob-
jective functions for which models can optimize.

This work has several important limitations. First, the lan-
guage people use nowadays in email communications may
be different from that used by Enron employees 20 years
ago. To ensure that the large differences we found between
the human responses and the AI-generated responses do not
simply stem from the use of outdated language in the orig-
inal Enron corpus, two of the authors annotated a random
sample of replies and found that no more than 7% of the
responses contain outdated language (inter-coder reliability
of Gwet AC1 0.95), which is unlikely to fully account for
the differences found in this work. While our manual anno-
tation of a random sample of replies suggests that 93% of
responses could have been written today, as a resource that
is frozen in time, its relevance may degrade over time as
language is constantly evolving. The procedure we used to
develop EnronSR could be replicated in the future if more
up-to-date, publicly available corpus of human communica-
tions becomes available. Second, the communications in the
Enron corpus may not be representative of the language gen-
erated by the general population or email communications
outside the context of work. In addition, similar to other
algorithmic audits, we cannot determine whether the same
underlying Smart Reply model was used throughout our ex-
periments or across different accounts (e.g., due to A/B test-
ing). Particularly challenging is the issue of personalization,
which despite our best efforts to limit its impact, may still
exist to some extent in the set of collected responses. Nev-
ertheless, the extensive robustness and validity checks con-
ducted as part of this research ensure that the corpus is at
least internally valid, even if external validity is somewhat
limited.

In summary, this work presents EnronSR, a new resource
for benchmarking AI-MC models in an open and repro-
ducible manner, identifies significant differences between
human- and AI-generated responses, and highlights sev-
eral aspects of generated responses that future models could
align better with human responses.

Code Availability Statement
All replication code is publically available at https://github.
com/Socially-Embedded-Lab/EnronSR for academic usage.

Ethical Statement
This study was approved by the ethics review board of Ben-
Gurion University (protocol #344-1). Although the founda-



tion of EnronSR is a public and widely-used dataset, re-
leased by the U.S. justice system in 2004, we took several
steps to minimize any potential risks that may stem from
our annotation of the original corpus. No personally identi-
fying information (PII) is released as part of this dataset. The
Smart Reply suggestions included in EnronSR were man-
ually validated to ensure that no PII or sensitive informa-
tion was included. Our validation is on top of the internal
processes at Google for selecting SRs that are popular and
that meet quality and safety guidelines assessed by human
raters (Kannan et al. 2016). The email accounts used as part
of this research were created in compliance with Google’s
terms of service (TOS), and were permanently and imme-
diately deleted as soon as the data collection concluded.
Specifically, the audit did not violate any spam law, mis-
lead or deceive users, or circumvent any Google policy.
AI-generated content is not protectable under copyright or
patent law, and according to Google policy5, SRs as frequent
user responses are not considered Google’s content.

It is important to note that there is a growing profes-
sional and legal consensus that it is in the public’s interest
to allow academic researchers to study major publicly de-
ployed algorithms to investigate social bias and other forms
of potentially harmful algorithmic practices even when such
studies violate TOS (Metaxa et al. 2021). As stated, our
work did not violate Google’s TOS, but it does investigate
a major publicly-deployed algorithm that could have a sig-
nificant impact on individuals and society. To limit poten-
tial misuses of this benchmark, we are sharing EnronSR
with a CC BY-NC-SA 4.0 (Attribution-NonCommercial-
ShareAlike) license to allow others to build upon this work
non-commercially, with proper attribution, and sharing un-
der the same terms.
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EnronSR Schema
The dataset consists of two table: one representing incom-
ing messages and another representing replies to incoming



Field Description
incoming msg id Message ID of an email in the Enron corpus that was sent to one of the

150 focal users.
recipient msg id Message ID of a random email in the Enron corpus that was sent by the

recipient of the current message. This is useful for identifying the particular
recipient of the incoming message for whom we collected SRs for.

sr1 The first Smart Reply that was suggested by Google, empty otherwise.
sr2 The second Smart Reply that was suggested by Google, empty otherwise.
sr3 The third Smart Reply that was suggested by Google, empty otherwise.
has hr Indicator whether the incoming message has at least one human reply.

Table 3: Schema for the incoming messages table.

Field Description
incoming msg id Message ID of an email in the Enron corpus that was sent to one of the

150 focal users.
recipient msg id Message ID of a random email in the Enron corpus that was sent by the

recipient of the current message. This is useful for identifying the particular
recipient of the incoming message for whom we collected SRs for.

reply msg id Message ID of an email in the Enron corpus where the focal user replied to
the incoming message.

Table 4: Schema for the human replies table.

Email Response SR 1 SR 2 SR 3 Score
Guys, I got the following
approved by Whalley.
We should sit down and
discuss next steps asap

when? i am free
anytime this aft

Sounds good. Great! Yes, let’s
discuss.

0.308

Maybe a conference call
would be the
most productive way to go.

I’m free
after 11 am

Yes, I agree. Sounds good. I don’t
think so.

0.297

...I would like
for you to provide me
with details of your
previous rotations..

I worked in ENA
West Risk from
July 2000 until
March 1 , 2001 ...

Noted, will do. Thank you,
will do.

Noted with
thanks.

0.145

Please let me know
if you plan to attend

I will be attending. I will be attending. I will be
attending
the meeting.

Yes, I will
be attending.

0.861

hope everyone
is okay with this

Sounds good
to me

Sounds good
to me

Fine with me. Sounds good 0.698

Table 5: Examples of low and high cosine similarity. Top three rows have low similarty while the bottom two rows have high
similarity.

messages. The schemas for these tables are in Table 3 and
Table 4, respectively.

Examples Responses
Table 5 provides examples of low and high cosine similarity
suggestions to provide readers with a qualitative sense of the
matches and mismatches. Each raw represents an incoming
message, its human reply, and the SRs.

Additional Measures of Emotional Valence
Figure 5 provides histograms of the emotion valence of
human- and AI-generated responses as obtained using

Textblob (Loria et al. 2018) and Vader (Hutto and Gilbert
2014), respectively.

Emotional Valence of GPT-3
Figure 6 shows the proportion of negative and positive re-
sponses generated by humans, SRs, and GPT-3. The figure
replicates the proportions appearing in Figure 2 with the ad-
dition of the polarity of responses obtained through GPT-3.



Figure 5: Emotional valence scores as obtained by TextBlob (left) and Vader (right) for human and SR generated responses.

Figure 6: The proportion of positive and negative responses,
as measured through Flair, when generated by humans, SR,
and GPT-3.


